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PREFACE o

The model study of the temporary lock at Locks and Dam 52 was authorized
by the US Army Engineer Division, Ohio River (ORD), on 9 January 1985. Per- it

tinent information to conduct the study and the funding were provided by the 2
US Army Engineer District, Louisville (ORL). g?

The study was conducted during the period April 1985 to December 1985 by &
personnel of the Hydraulics Laboratory of the US Army Engineer Waterways v
Experiment Station (WES) under the direction of Messrs. F. A. Herrmann, Jr., '5,
Chief of the Hydraulics Laboratory, and J. L. Grace, Jr., Chief of the Hydrau- 3?

lic Structures Division. The tests were conducted by the following Spillways

g
and Channels Branch (S&CB) personnel: Messrs., S. T. Maynord, Project Engi- 3?
neer, W. B. Fenwick, R. Bryant, E. L. Jefferson, G. Gleason, and J. R. Rucker, é?
O
and Mmes. J. McAlpin, J. A, Flowers, and L. Turner under the direct supervi- h{

sion of Mr. N. R. Oswalt, Chief, S&CB. The model was constructed by -
[R}
! Messrs., Ed Case and Dennis Rushing of the Engineering and Construction Ser- Q;
4 ‘f
. vices Division. This report was written by Mr, Maynord and edited by :
: Mrs. Marsha Gay, Information Technology Laboratory. ,$

During the course of the investigation, Messrs. Glen Drummond, Dave

~
: Pattison, and Laszlo Varga of ORD, and Larry Curry, Gene Allsmiller, Truman gz
N Emerson, and Dave Beatty of ORL visited WES to observe tests and/or to discuss %
test results. f:
[§ N

COL Allen F, Grum, USA, was the previous Director of WES. COL Dwayne G.

' ’
. Lee, CE, is the present Commander and Director. Dr. Robert W. Whalin is ;f
‘ Technical Director. ;(
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CONVERSION FACTORS, NON-SI TO SI (METRIC) o
UNITS OF MEASUREMENT ::.

Non-SI units of measurement used in this report can be converted to SI -

(metric) units as follows:

Multiply By To Obtain NS
degrees (angle) 0.01745329 radians

feet 0.3048 metres

horsepower 745.6999 watts v
inches 2.54 centimetres N

square feet 0.09290304 square metres
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SAFE NAVIGATION SPEEDS AND CLEARANCE AT LOWER SILL,
TEMPORARY LOCK 52, OHIO RIVER

PART I: INTRODUCTION

The Prototype

1. Locks and Dam 52 is a low-1lift navigation dam with two locks located
on the lower Ohio River near Paducah, Kentucky (Figure l). Construction of
the original Lock and Dam 52, which had a single 110- by 600-ft* lock, was
completed in 1928. The existing dam is of the movable type with a 1,248-ft
navigation pass, 540 ft of chanoine weir, 160 ft of bebout weir, three 91-ft
beartraps with piers, and 725 ft of fixed weir for a total length of 2,998 ft.
The dam has a navigable pass that can be lowered during periods of high flow
to allow navigation to proceed over it unhindered. This high flow occurs an
average of 60 percent of the year.

2. During the 1960's it became clear that the single 600-ft lock could
not meet the immediate navigation needs, nor could a permanent improvement
plan be brought on-line in time to avoid serious delays to commercial naviga-
tion. Accordingly, in 1969, a 110- by 1,200-ft temporary lock was completed
at Locks and Dam 52. The lift for both the 600- and 1,200-ft temporary locks
is 12 ft at normal pool. Details of the 1,200-ft temporary lock are shown in
Plates 1 and 2, and an upbound tow is shown entering the temporary lock in
Figure 2.

3. Towboats on the lower Ohio River passing through Locks and Dam 52
vary considerably with power ranging up to 8,500 hp and are propelled by open
wheels or Kort nozzles. The majority of tows using the lock are close to
1,200 ft in length. Draft on barges varies from 2 ft (empty) to in excess of
10 ft.

Purpose of the Model Study

4., At low flow periods on the lower Ohio River, the lower pool

* A table of factors for converting non-SI units of measurement to SI
(metric) units is found on page 3.
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elevation of 290* provides only 11 ft of depth over the lower miter gate sill ﬁﬁ
(el 279) of the temporary lock. At such depth, heavily loaded tows or tows :ﬂ
traveling too fast have a great potential for striking the lower miter gate -
sill. On two occasions the sill has been struck and structurally damaged, '%.
halting operation of the 1,200-ft lock and causing severe delays in naviga- E:
tion. As a result of these accidents, the following draft restrictions are ‘i
presently used to ensure safe navigation at Locks and Dam 52: -

a. Effective immediately, when the lower gate at Locks and Dam 52 ?g
is 10 ft (depth over sill = 12 ft) or less, no towboat or barge o

with a draft in excess of 9 ft 3 in. will be permitted to pass

)

through the 1,200-ft chamber. Vessels permitted to enter the -’s

1,200-ft chamber must exercise extreme caution in the vicinity 't

of the lower gate sill. "Slow speed" and "no driving over the

lower sill" will be mandatory. ;i‘
»

lo

Tows with drafts in excess of 9 ft 3 in. will be locked through
the 600-ft lock. Double locking in the 600-ft lock, which is

' normally not permitted when the 1,200-ft lock is operating, will
be allowed while stages of 10 ft or less exist.

DO

The purposes of this study were to determine the mechanisms that produce tow

RN
F ot X

4 A8

' squat and to define combinations of speed, draft, and clearance that provide

safe navigation through Locks and Dam 52.

e
-

Scope |

)

v'.‘\

S

. 5. The study began with a search of existing literature. Next a proto- ::
type investigation was conducted to observe tow operation at Locks and Dam 52. S
! A physical model investigation using tows either self-propelled or pulled with :ﬁf
: a towing apparatus was then used to determine the mechanisms causing tow squat ::
. and to define conditions for safe navigation through the locks. ‘:o
) Potential Mechanisms for Producing Tow Squat 2
AR

" 6. Tow squat is the vertical drop of the tow due to motion, measured 'i
' from the still water level. Several possible mechanism for producing tow {
. squat are discussed in the following paragraphs and will be addressed in the oS
¥ )
: testing program. :ﬁ
§ :4:
5

* All elevations (el) and stages cited herein are in feet referred to the ]

N National Geodetic Vertical Datum (NGVD). NS
'. <
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Displacement squat

7. Displacement squat is the traditional concept of tow squat in con-
fined waterways which is presented by several investigators including Jansen
and Schijf (1953).* Displacement squat occurs when the water adjacent to the
tow is set into motion by the displacement of the tow. To maintain the same
total energy, the water surface must drop by an amount equivalent to the ki-
netic energy of the moving water. This drop in water level results in squat
of the tow. Displacement squat is related mainly to tow speed, ratio of tow
cross-sectional area to waterway cross-sectional area, and depth of water.
Since the propeller speed is unimportant for this type of squat, the results
from the towing tests will be used to determine the importance of this mecha-

nism for producing squat.

Piston squat

8. This mechanism is restricted to locks, because the channel is
blocked at one end, and is significantly different for entering (upbound) ver-
sus exiting (downbound) tows. Ebntering tows tend to "pile up" water in front
of the tow, which tends to give the tow a greater depth in which to float,
particularly at the bow of the tow. Therefore piston squat is not possible
for entering tows. For exiting tows, the opposite is true. As the tow leaves
the lock, the volume behind the tow can be increasing at a greater rate than
the return flow under and around the tow. If this happens, the water depth
available behind the tow can decrease, causing squat, particularly of the tow-
boat. This phenomenon is shown in Figure 3. Since this mechanism is not re-
lated to propeller movement, the results of the towing tests will be used to
address the importance of this mechanism.

Propeller squat

9. Propeller squat is caused by the ability of the towboat to pump
water from beneath itself faster than it can be replaced. This effect is sig-
nificant only in shallow water and is enhanced by the presence of the barges
upstream, which can block the supply of water to the propellers, particularly
in a confined waterway such as a lock.

Moment squat
10. Moment squat (Figure 4) is caused by the offset between the force

* P. Ph, Jansen and J. B. Schijf. 1953. 18th Congress, Permanent Interna-
tional Association of Navigation Congresses; Section 1, Inland Navigation,
Communication 1, Rome.
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produced by the propellers and the force at the connection with the barges.

This offset, which would be greatest with unloaded barges, produces a clock-

wise moment that tends to force the rear of the towboat down.
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PART II: PERTINENT LITERATURE

11. Present guidance for gate sill depths is presented in ETL 1110-2-
223*% as follows:

a. Discussion. The guidance presented for selecting gate sill

- depth (SD) is not intended to reduce the established lock cham-
ber depth (CD). Experience and research data indicate the SD's
should be as great as practical to lessen tow entry and exit
times and chamber surges during these maneuvers. A 2- or
3-ft-high gate sill (above chamber floor) or a local recess is
often desirable to provide space for gate seating, maintenance
work, inspection, and to keep sediment and debris out of the
chamber.

Guidance.

T

(1) The lower gate sill is to be from zero to 3 ft high (above
the chamber floor) when the CD is less than or equal to
2d + 3 ft [d = design vessel draft]. If the sill is set
lower than 2 ft above the chamber floor, the floor should
be recessed in the area of the gate to provide at least
2 ft clearance under the gate.

e E s,
L -,

,&;,

When the CD is greater than 2d + 3 ft, the lower SD should
be at least 2d.

The upper SD should be at least equal to the lower SD.

In establishing the upper SD, special operating conditions
such as hinge pool operation and provisions for navigation
of special equipment in case of loss of pool also should
be considered. These considerations may result in a
greater SD than would otherwise be required.

Additional allowances for CD and SD over the above may be
necessary for special conditions such as ice accumulations
on bottoms of tows, debris, or sediment accumulations,
etc.

The minimum sill depth at Locks and Dam 52 (%11 ft) is considerably less than
the desired 2d = 18 ft specified in ETL 1110-2-223.

12, Jansen and Schijf (1953)** presented a method of computing squat
and limiting speed for ships or tows moving in a canal. Limiting speed is the

e
-

tow speed at which critical flow (in the open channel flow sense) will occur

- - - «
o
.

),

adjacent to the tow. Self-propelled vessels cannot exceed this limiting speed

,-

regardless of the power applied. The Jansen and Schijf method requires

l‘ l' 0‘ -
a4 A N

LA

h o)

* Office, Chief of Engineers. 1977, "Navigation Lock Sill Depths and
Hydraulic Loads on Gates," ETL 1110-2-223, Department of the Army,
Washington, DC.

** Jansen and Schijf, op. cit.
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constant speed, a uniform cross section, and absence of confining walls either
upstream or downstream. All three of these requirements are violated by a tow
moving in or out of a lock. Even though the Jansen and Schijf method cannot
be used quantitatively at a lock, the concept of tow speed being limited by
critical flow is valid. For comparison purposes only, the limiting speed and
squat based on Jansen and Schijf's method are presented in Figures 5 and 6,
respectively.

13. Kooman (1973)* discussed phenomena observed during tow entry and
exit. Entry speed can be irregular due to formation of positive translation

waves in front of the tow. Exit speed for loaded tows is often controlled by

the limiting speed.

* C. Kooman. 1973. '"Navigation Locks for Push Tows," Rijkswaterstaat Com-
munications, Government Publishing Office, The Hague, The Netherlands.
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PART III: PROTOTYPE INVESTIGATION

14. Early in this study a limited prototype investigation was conducted
to observe tow movement and to measure tow speed and squat. Tow speed was
obtained by measuring the time required for the tow to pass successive 50-ft
intervals along the lock. Squat was measured by mounting a 30-ft level rod on
the rear of the towboat and taking readings with a surveyor's level located on
the lock wall. Prototype data are listed in Table 1, and results of the mea-
surements are shown in Figures 7-16. The stationing used in these figures is
the same as that posted on top of the prototype lock walls. The following
general comments are based on observations made during the prototype
investigation:

a. There was a wide range in horsepower and towboat size. These
variations resulted in different operational techniques at cer-
tain points during entering and exiting the lock.

|o

The rudder configuration varied with the different boats. The
larger boats had Kort nozzles with a steering rudder behind the
wheel and two backing (or flanking) rudders in front. The
smalier boats had similar rudder arrangements but open wheels
(no Kort nozzle). Wheel sizes and pitches also varied widely.
One boat (Omega) had a controllable pitch wheel which varied
from 1 to 5 deg.

c. Another variation among tows was the arrangement of empty and
loaded barges. There appeared to be no consistent trend to put
loaded barges at front, rear, outside, or inside of the tow.
The major consideration when making up a tow seemed to be the
points of pickup and leaving of individual barges.

d. Connections between the towboat and the tow were made up in
many different ways. Occasionally the boat was set off to one
side at the rear of a tow. Again, the major consideration when
connecting the towboat to the tow had to do with the order of
adding and dropping individual barges.

e, All pilots used very low headway while entering and leaving the
lock. Power was usually set in the range of 100-200 wheel
rpm's. The pilots of larger boats cut the power off during the
entire time the boat was over the sill. Some have learned to
use the confining effect of the lock and their engines to
actually increase their clearance over the sill by either pull-
ing water under themselves or riding the returning lock wave.
Sufficient headway is required to permit the boat to "coast"
over the sill,

|

Very little and very infrequent rudder was applied once the tow
was lined up with the lock and was sheltered by the approach
walls.
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‘Q}
07
A;g:
g. Pilots have been requested by the lock operators to traverse :5
the lower sill under no power, i.e., coasting. This was done 'd
by several of the pilots. o
h. Speed varied considerably from tow to tow along the lock _§
T chamber. ﬁ&
i. Squat was at a maximum (up to 0.8 ft) when the towboat was ac- 2q
; celerating or decelerating. While tows were under way at a .k
' constant engine speed, the squat for all towboats varied from ‘{
0.1 to 0.65 ft. Squat was less than 0.1 ft when coasting.
These measurements apply only to the stern of the towboat. e
s Jj. High forward thrust on the towboats observed produced signifi- ?\
: cant squat. High backward thrust was not consistent from tow f\
to tow. Some tows had the highest squat while using high back- ”
ward thrust. Others rode up in the water (negative squat) for A
high backward thrust.
: k. Tows entering the lock from downstream maneuvered slowly until t
. their bow was in the confined section and the tow was aligned i
¥ with the downstream wall. Then the tows came ahead with sig- oy
! nificant speed. Often, because of so many tows waiting, the ﬁ}
upbound tows were tied off just below the lower miter gate. ‘
l. In the past, the downstream culvert valve was often closed ':’,
b after the lower pool elevation was achieved in the lock. Lock >
operators are now leaving the valve open while the tows move in {
: and out of the lock. "
m. The operators suggested that the poor cell alignment at Locks .
and Dam 52 keeps the tow speed down. =
+ e,
\ n. Operators generally lock three tows up and then three tows down 55
. when tows are waiting. ﬁ'
: o. The lock operators explained one of the problems with the 5J
present draft restriction is that for lower gage readings of
' 10.0 ft or greater, any draft tow can enter the lock. Once the )
4 gage falls below 10.0 ft, tows are restricted to 9 ft 3 in. and -
X each barge has to be measured, which considerably slows the Y
K lockage time for each tow. A gage reading of 10.0 ft corre- ::Q
¥ sponds to a depth of 12.0 ft over sill. <
p- The lock operators stated that some of the towboats draft in
excess of 9 ft. Often tows come through which have towboats gf
k too small for the load being pushed. .z'
{ q. The lower sill problem at Locks and Dam 52 is a case of having bﬁ
Z: to regulate all tows because of the performance or loading W
- characteristics of a very few tows. This lock operated for .
1 many years without a draft restriction and without damage to =~
K the lower sill, One pilot, either pushing a heavily loaded tow {2
{ too fast or with excessive acceleration of the towboat while :?
0 over the sill, damaged the lower sill and put the lock out of g\
» operation., The lock operators feel that a speed restriction (s‘
combined with some type of draft restriction may be more effec-
‘ tive than the present draft restriction only. s
‘. :"\‘
5 N
: 1 X
L) .
3 X
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PART IV: THE MODEL

..
s e
y P oo

O

Description

4

]

4

: 15. A 1:20-scale model was used to reproduce the 1,200-ft lock and .
. 1,200 ft of the downstream approach to the lock (Figure 17). Initially, the ht

model was constructed without the side filling and emptying flume. After the

s initial test series, the side filling flume, downstream culvert, and manifold é

0
z were placed in the model. The model was then operated with the emptying ;
D (
4 valves open at all times. Corrugated sheet metal was used to reproduce the Y

roughness of the sheet pile cells forming the riverward lock wall. The lower

; miter gate sill (Figure 18) was formed of Styrofoam to prevent damage to the A
? model towboat. E‘
’g 16, The model towboat (Figure 17) simulated a prototype towboat having f
: twin 9-ft-diam open wheels, two main and two flanking rudders, a length of “
r 209 ft, a 44-ft beam, and a draft which was varied from 9 to 10 ft. Towboat o
draft was always equal to the barge draft being tested except for tests with ‘:-'c
" unloaded barges. The variable speed towboat engines were battery powered, and .{
v the towboat was operated by a person onboard. Barges modeled in this investi- n

i: gation were 35 ft wide by 195 ft long with drafts up to 10 ft. The barges ‘?
b were lashed together to form a tow three barges wide by four barges long. The ‘:
b bows of the lead barges were raked, and the sterns of the rear barges had :'

boxed ends. Barge draft was varied using sand ballast. Towboat draft was y

: varied using lead and masonry weight. To represent the prototype most accu- E,
‘ rately, the connection between the model towboat and barges was flexible. ::
: 17. Data collected during the study included tow speeds, propeller ::
; speed, squat, draft, and depth over the lower sill. Tow speed was obtained by '

} measuring the time required for the tow to pass successive 200-ft intervals 14
h along the lock. Squat was measured at the bow of the lead barge, the midpoint ;

'f of the barges, the stern of the rear barge (equal to the bow of the towboat), :3
iy and the stern of the towboat. The four staff gages used for squat measuremert e
\ are shown in Figure 17. The squat measurements were taken as the staf! gage ;;
; passed over the lower sill. All depths were measured relative to the top of .i‘
k) the lower sill. N
i 18. A simple towing device was used in a small portion of the tests to g
i pull the tow in and out of the lock. The towing line was attached to the lead :S
K >
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2
barge and placed at an elevation that would not cause a significant upward or ?i
Wi
downward force on the front of the barge. ,ﬁ
Ry
Scaling Relations \.
. B
' 19. The equations of similitude based on Froude's Law "
ot
' i Y
: Froude number (Model) = Froude number (Prototype) = — (1) N
VSL e
; A
¥ . &
where
. W
' V = velocity, ft/sec 35
1) (X}
' g = gravity, ft/sec2 &2
. .'
N L = characteristic length, ft ﬂ;
'y
were used to express mathematical relations between the dimensions and the .
\‘
; hydraulic quantities of the model and prototype. The following relations were a}
[
N sed: )
; ’ A
y Dimension Ratio Scale Relations .h
_ Prototype Length .
4 Length L = Model Length 1:20 ::
\
! 1/2 N
V Time T =1 1:4.47 "o
y T r "
¥
1 1/2 . s
f Velocity Vr = Lr 1:4.47 At
o ':. )
' Weight W= L2 1:8,000 o
r T *
. RPM R = 1/1,1/2 1:0.224 !
: T r .
1
{ However, frictional resistance of ships is dependent on the Reynolds number .
:' l.‘
L)
VL ~g
: ~
. 2 ™
f where v 1is the kinematic viscosity, ft"/sec. The model and prototype g
! Reynolds numbers are different when the same fluid is common to both model and -9
X prototype, and the Froude criteria are used as the basis for similitude. ;7
¥
1) 13 .(-
\ <
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' SN S R I I UL PR P I L P I I B L A i R AT L A W Wl g W] LA A R PR DU L W Y -~
TN N O BN L N T N TN I BN 8 O A N N T O A TN R T WM




Using different Reynolds numbers results in greater friction forces in the
model, causing slower tow speeds in the model compared with those in a proto-
type having similar propeller thrust. Some ship studies increase propeller
thrust by increasing revolutions to achieve the correct ship speed. This
approach could not be used in this investigation because the pumping action of
the propellers is one of the primary causes of tow squat. However, because of
the large model used in this investigation, tow speed in the model should not
be significantly less than in the prototype. Any differences in tow speed
were further minimized by modeling a 1,000-ft-long prototype tow instead of
the 1,200-ft-long tow normally encountered in the prototype. A comparison of
tows two barges long with tows four barges long showed that tow length is not

a significant factor for tow squat in a lock.

14




PART V: TESTS AND RESULTS b

Tests with Emptying Flume and Downstream Culvert

o
\
Self-propelled tests, loaded barges h%
1t

20. Table 2 summarizes the results of all tests. The following tests gﬁ

were conducted using the towboat to propel the barges: ;.
W,

Depth Over Sill, ft ;ﬁ

Draft, ft 11.0 11.5 12.0 12.5 .:{:

9.0 x x g#

9.5 x x x B\

10.0 X X X §

!

b

x = test conducted for this condition. jﬂ

.I,

These tests were conducted for both entering upbound and exiting downbound ‘ﬁ

tows using a wide range of propeller speeds. No tests were conducted with

. entering downbound or exiting upbound tows since the tow did not cross the 2 
E lower sill for these conditions. All tests began with the tow stationary. E&:
: Tests with entering tows were begun with the bow of the lead barge located A
100 ft downstream of the beginning of the confining section of the lock.  a
; Tests with exiting tows were begun with the stern of the towboat against the ok
h upper miter gate. For each test the propeller speed remained constant i{
% throughout the entering and exiting maneuver. Results of the selected indi- E”
vidual tests are shown in Plates 3-18. Stationing used in these plots is con- ~
K sistent with the stationing shown on Plate 1. Results showing maximum squat 5;:
3 versus tow speed are summarized in Figures 19 and 20. Maximum squat versus :;
: propeller speed is summarized in Figures 21 and 22, The maximum squat for the ;:
self-propelled tests was almost always at the stern of the towboat. The speed
5 of the entering tows was irregular due to the formation of translation waves. P:
',: Tows having the same clearance (depth over sill minus draft) had about the 's-
E same squat for the same propeller speed. All values shown are in prototype 53
7 units unless noted otherwise. A summary plot showing the relationship of .
K squat, clearance, and propeller speed is shown in Figure 23. Static clear- :ﬁ
ﬁ' ances of 2.5 ft between sill and tow maintained at least 1 ft of clearance ?;‘
:‘ while the tow was under way for all propeller speeds. Static clearances of g
4 1.5 and 2.0 ft resulted in less than 1 ft of clearance while the tow was under ’
g way. E:t
; : 2
Y N
i 2
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Towing tests, loaded barges

21. A second series of tests was conducted using the towing mechanism
to pull the tow in and out of the lock. All conditions were similar to those
of the propulsion tests except that the propellers were not turning. These
tests were conducted in an attempt to separate the displacement or piston
squat from the squat caused by the propellers pumping the water out from be-
neath the tow. Tests were necessary with only one draft (10.0 ft) to study
the different squat producing mechanisms. Results for the entering and exit-
ing tows are summarized in Figures 24 and 25, respectively. Results from se-
lected individual tests are shown in Plates 19-24., The entering tows show
almost no squat for all speeds tested during towing. This indicates displace-
ment squat is not significant for loaded entering tows since it is related to
tow speed. The exiting tows show increasing squat with increasing speed for
towing. The maximum squat for the towing tests was located at the stern of
the rear barge for almost every test. Comparisons of results from the towing
tests with results from the propulsion tests should be used with caution be-
cause the propulsion tests had significant variation of tow speed while the
towing tests had a constant tow speed. Another series of towing tests was
conducted using a variable speed similar to the self-propelled tests. Results
are shown in Figure 26. The maximum squat for each test versus speed ap-
proaching sill and speed over sill are summarized in Figure 27.

Self-propelled tests, unloaded barges

22, A limited series of tests was conducted using unloaded barges with
a draft of 2.0 ft, a towboat draft of 9.5 ft, and a depth over sill of 12 ft.
The unloaded upbound entering tows observed during the prototype investigation
used very little power entering the lock. Unloaded downbound exiting tows
were strongly affected by crosswinds and occasionally had to use considerable
power in the vicinity of the lower sill. For this reason, only exiting tows
with the unloaded barges were tested. These tests were conducted with the tow
approaching the sill at a speed of approximately ] to 1.5 ft/sec and then ac-
celerating when the stern of the towboat was 150 ft from the lower sill. Max-
imum squat, shown in Figure 28, occurred when the rear of the towboat was over
the sill. Rudders were maintained straight ahead, which resulted in consider-
ably higher tow speeds compared with those of tows fighting a strong cross-

wind. These tows would have to use hard left rudder.
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o
Tests Without Emptying Flume and Downstream Culvert g'
"
Self-propelled tests, loaded barges r
23. An initial test series was conducted using the model without the 3
lock emptying flume and culvert. Selected individual test results are shown o
in Plates 25-28. Observation of these tests and initial test results showing ‘
excessive squat suggested that the emptying flume and culvert should be added
to the model. Results are summarized and compared with the results using the -}
i flume and culvert in Figures 29 and 30. Speeds are higher for both entering ij
and exiting the lock with the culvert installed. Squat, for the same tow \
speed, is decreased with the culvert. The irregular entry speed caused by ¢
translation waves was more pronounced without the emptying flume and culvert. .k
Acceleration tests, loaded barges i
% 24. Tests were conducted to demonstrate the effect of an increase in 2:
propeller speed when the towboat is in the vicinity of the lower sill. The :
: results of these tests, conducted for an exiting tow, are summarized in jﬁ
: Figure 31. E
‘ ‘
: :3
Moment Squat Tests
f 25. A series of tests was conducted to address the possibility of .*
K moment squat (see paragraph 10) using the tow in a large depth of unconfined v
' waterway. Squat was measured with the loaded tow initially stationary for a
: range of propeller speeds. Results are shown in Figure 32. These tests <,
‘j showed relatively small squat for the loaded tow for all propeller speeds. :ji
v These tests were repeated with unloaded barges (draft~2.0 ft) and a towboat ?
1 draft of 9.5 ft. Results (also shown in Figure 32) show greater squat for the ,_
? unloaded tows and increasing squat for increasing propeller speed. E:
i« »
¢2: A
N o
e :
i :
3 :
.
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PART VI: CONCLUSIONS AND RECOMMENDATIONS

26. Based on tests using both self-propelled tows and a towing appara-
tus, this investigation has identified four possible mechanisms for producing
tow squat in navigation locks and has shown that squat for entering tows is
caused by different parameters from these causing squat for exiting tows. For
the tow used in this investigation, combinations of speed, draft, and clear-
ance were determined that provide safe navigation through Locks and Dam 52.
Static clearances of 2.5 ft between sill and tow maintained at least 1 ft of
clearance while the tow was under way for all propeller speeds. For static
clearances of less than 2.5 ft, propeller speed had to be limited to maintain
1 ft of clearance while the tow was under way.

27. The maximum squat for almost every self-propelled test (entering
or exiting) was located at the stern of the towboat,

28, Because the towing tests of entering tows produced very little
squat, tow speed is not important for entering tows, Since displacement, pis-
ton, and moment squat have been shown to be either small or inapplicable to
entering loaded tows, propeller squat is the primary mechanism producing
squat.

29. For exiting loaded tows, propeller squat is still an important
mechanism for producing squat. This was illustrated by the acceleration
tests, during which all the tows approached the sill at the same speed but
showed increased squat for increased propeller speed. The towing tests show
tow speed to be another significant factor in defining squat for exiting
loaded tows. It was not determined whether this mechanism was displacement or
piston squat.

30. Entry speed can be very irregular due to the formation of transla-
tion waves. These waves are caused by the tow moving from the unrestricted
waters into the confining section of the lock. The irregular entry speed
caused by the translation waves was more pronounced in the tests without the
emptying flume and culvert.

31. Unloaded exiting tows also have the potential for enough squat to
strike the lower sill when operating at high propeller and tow speed and low
clearance between tow and sill.

32. The downstream valves for the emptving flume should remain open

during tow entry/exit. Fntry/exit speeds were higher with the valvec ~pen.
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For equal tow speeds, squat is considerably less with the valves open.
33. Speed of tow entry and exit at the shallow depths in Lock 52 will
be very low because of the limiting speed concepts discussed in Part II. Tow-

boat captains passing through the lock will have to be patient.

34. Large towboats are susceptible to striking the lower sill because
they have the greatest draft and the greatest potential for producing propel-
ler squat. Small towboats may be susceptible to striking the lower sill be-
cause they may have to use increased power while in the vicinity of the lower
sill,

35. The one-dimensional squat models (displacement squat) used in con-
fined waterways* are nct applicable to squat in navigation locks.

X 36. The primary weakness of this study was that one towboat and pilot
were used in the model whereas an almost infinite variety exists in the proto-
\ type. Consequently, the squat/propeller speed/draft relations for the model
towboat cannot be strictly applied to all prototypes. But identification of
the primary variable controlling tow squat in navigation locks, namely propel-

ler speed, can enable the solution of the problem.
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Figure 1.

VICINITY MAP
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